dataset
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
-
National Land Survey's geographic names are available as interfaces and files. Interfaces and file products comprise of place name products and map name products. The place name products include data about approximately 800,000 named places and their names in different languages. Data about place are among others place type, plane location and height above sea level, and data about names are among others the spelling that has been checked by the Institute for the Languages of Finland and language (Finnish, Swedish, Northern Sami, Inari Sami or Skolt Sami. In the place name products, every place and its name or names appear only once. The map name products contain the place names that have been selected for the National Land Survey's nine standard map products and information about the cartographical presentation of them. The information includes the location of the name on the map, for instance the coordinates of the left lower corner of the map text, the direction and bending of the text as well as typographical information, such as font type, size and colour. The name of a particular place, such as a river, can appear several times in the same map product. The product is a part of the open data of the National Land Survey.
-
The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:25 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).
-
This dataset contains points of information describing the location and size of spills of mineral oil observed during aerial surveillance flights by HELCOM Contracting Parties during 1998-2023. The data covers detections from fixed-wing aircraft only. Since 2014 Contracting Parties have also reported spills of other substances and unknown substances. The purpose of the regional aerial surveillance is to detect spills of oil and other harmful substances and thus prevent violations of the existing regulations on prevention of pollution from ships. Such illegal spills are a form of pollution which threatens the marine environment of the Baltic Sea area. Further information on detected spills in the Baltic Sea area and HELCOM aerial surveillance activities can be found at http://www.helcom.fi/baltic-sea-trends/maritime/illegal-spills/ and https://helcom.fi/action-areas/response-to-spills/aerial-surveillance/ The dataset contains the following information: Country Year Spill_ID = A unique code which will enable each individual spill to be individually identified FlightType = The type of flight the detection was made during: National = "N", CEPCO = "C", Super CEPCO = "SC", Tour d’Horizon = “TDH” Date = The date of the detection (dd.mm.yyyy) Time_UTC = The time of the detection in UTC (hh:mm) Wind_speed = The wind speed at the time of the detection (m/s) Wind_direc = The wind direction in degrees at the time of the detection (degrees) Latitude = The latitude of the detection (decimal degrees, WGS84) Longitude = The longitude of the detection (decimal degrees, WGS84) Length__km = The length of the detection (km) Width__km = The width of the detection (km) Area__km2_ = The area of the detection (km2) Spill_cat = Spill/pollution category: Mineral Oil = “Oil", Other Substance = "Other substance" , "Unknown substance" = “Unknown” EstimVol_m = If Spill_cat="Oil", then estimated min. volume of oil spill. Volume of the detection confirmed/observed as mineral oil as calculated using the Bonn Agreement Oil Appearance Code using the lower figure (BAOAC minimum) in m3. Vol_Category = Category of the detection: <0,1m3 = “1”, <0,1-1m3 = “2”, 1-10 m3 = “3”, 10-100 m3 = “4”, >100 m3 = “5” Type_substance = If Spill_cat="Other substance" or "Unknown. Product name or type of OS or GAR substances that could be identified (in case of known polluter, or via visual identification - cf. BAOAC Atlas). - Examples for OS: vegetable oils (palm oil sun flower oil, soya oil etc.), fish oil, molasses, various chemicals (methanol, biodiesels/FAME, toluene, paraffines etc.); Examples of GAR: solid cargo residues (e.g. coal residues), plastics, fish nets, … OR "Unknown" (in case the type of substance could not be identified) Polluter = Type of polluter source: Offshore Installation = “Rig”, Vessel = “Ship”, Other Polluter or source (e.g. land based source) = “Other”, Unknown = “Unknwon” (in case of an “orphan” spill that cannot be linked to a polluter) Remarks = Any additional information to inform on particular situations Description of marine litter sightings
-
-
-
The data compiles seabed remote sensing situation since the 1960s. The data includes spatial data and metadata related to each survey line, mainly based on the data produced by the Geological Survey of Finland
-
This assessment was part of project Baltic ForBio funded by the Interreg Baltic Sea Region Programme (https://www.slu.se/en/departments/forest-economics/forskning/research-projects/baltic-forbio/). The project was carried out in 2017-2020. The harvesting potentials in Finland were calculated for the following assortments: • Stemwood for energy from thinnings, pine • Stemwood for energy from thinnings, spruce • Stemwood for energy from thinnings, broadleaved • Stemwood for energy from thinnings (smaller than pulpwood-sized trees), pine • Stemwood for energy from thinnings (smaller than pulpwood-sized trees), spruce • Stemwood for energy from thinnings (smaller than pulpwood-sized trees), broadleaved • Logging residues, pine • Logging residues, spruce • Logging residues, deciduos • Stumps, pine • Stumps, spruce. 1.1 Decision support system used in assessment Regional energywood potentials were calculated with MELA forest planning tool (Siitonen et al. 1996; Hirvelä et al. 2017). 1.2 References and further reading Anttila P., Muinonen E., Laitila J. 2013. Nostoalueen kannoista jää viidennes maahan. [One fifth of the stumps on a stump harvesting area stays in the ground]. BioEnergia 3: 10–11. Anttila P., Nivala V., Salminen O., Hurskainen M., Kärki J., Lindroos T.J. & Asikainen A. 2018. Re-gional balance of forest chip supply and demand in Finland in 2030. Silva Fennica vol. 52 no. 2 article id 9902. 20 p. https://doi.org/10.14214/sf.9902 Hakkila, P. 1978. Pienpuun korjuu polttoaineeksi. Summary: Harvesting small-sized wood for fuel. Folia Forestalia 342. 38 p. Hirvelä, H., Härkönen, K., Lempinen, R., Salminen, O. 2017. MELA2016 Reference Manual. Natural Resources Institute Finland (Luke). 547 p. Hynynen, J., Ojansuu, R., Hökkä, H., Siipilehto, J., Salminen, H. & Haapala, P. 2002. Models for predicting stand development in MELA System. Metsäntutkimuslaitoksen tiedonantoja 835. 116 p. Koistinen A., Luiro J., Vanhatalo K. 2016. Metsänhoidon suositukset energiapuun korjuuseen, työopas. [Guidelines for sustainable harvesting of energy wood]. Metsäkustannus Oy, Helsinki. ISBN 978-952-5632-35-4. 74 p. Mäkisara, K., Katila, M., Peräsaari, J. 2019: The Multi-Source National Forest Inventory of Finland - methods and results 2015. Muinonen E., Anttila P., Heinonen J., Mustonen J. 2013. Estimating the bioenergy potential of forest chips from final fellings in Central Finland based on biomass maps and spatially explicit constraints. Silva Fennica 47(4) article 1022. https://doi.org/10.14214/sf.1022. Natural Resources Institute Finland. 2019. Industrial roundwood removals by region. Available at: http://stat.luke.fi/en/industrial-roundwood-removals-by-region. Accessed 22 Nov 2019. Ruotsalainen, M. 2007. Hyvän metsänhoidon suositukset turvemaille. Metsätalouden kehittämiskeskus Tapio julkaisusarja 26. Metsäkustannus Oy, Helsinki. 51 p. ISBN 978-952-5694-16-1, ISSN 1239-6117. Siitonen M, Härkönen K, Hirvelä H, Jämsä J, Kilpeläinen H, Salminen O et al. 1996. MELA Handbook. 622. 951-40-1543-6. Äijälä, O., Kuusinen, M. & Koistinen, A. (eds.). 2010. Hyvän metsänhoidon suositukset: energiapuun korjuu ja kasvatus. Metsätalouden kehittämiskeskus Tapion julkaisusarja 30. 56 p. ISBN 978-952-5694-59-8, ISSN 1239-6117. Äijälä, O., Koistinen, A., Sved, J., Vanhatalo, K. & Väisänen, P. (eds). 2014. Metsänhoidon suositukset. Metsätalouden kehittämiskeskus Tapion julkaisuja. 180 p. ISBN 978-952-6612-32-4. 2. Output considered in assessment Valid for scenario: Maximum sustained removal Main output ☒Small-diameter trees ☒Stemwood for energy ☒Logging residues ☒Stumps ☐Bark ☐Pulpwood ☐Saw logs Additional information Stemwood for energy from thinnings. Part of this potential consists of trees smaller than pulpwood size. This part is reported as Stemwood for energy from thinnings (smaller than pulpwood-sized trees). Forecast period for the biomass supply assessment Start year: 2016 End year: 2045 Results presented for period 2026-2035 3. Description of scenarios included in the assessments Maximum sustained removal The maximum sustained removal is defined by maximizing the net present value with 4% discount rate subject to non-declining periodic total roundwood removals, energy wood removals and net incomes, further the saw log removals have to remain at least at the level of the first period. There are no sustainability constraints concerning tree species, cutting methods, age classes or the growth/drain -ratio in order to efficiently utilize the dynamics of forest structure. Energy wood removal can consist of stems, cutting residues, stumps and roots. According to the scenario the total annual harvesting potential of industrial roundwood is 79 mill. m3 (over bark) for period 2026-2035. In 2018 removals of industrial roundwood in Finland totaled 68.9 mill. m3 (Natural Resources… 2019). 4. Forest data characteristics Level of detail on forest description ☒High ☐Medium ☐Low NFI data with many and detailed variables down to tree parts. Sample plot based ☒Yes ☐No NFI sample plot data from 2014-2018. Stand based ☐Yes ☒No Grid based ☒Yes ☐No Multi-Source NFI data from 2017 (Mäkisara et al. 2019) utilized when distributing regional potentials to 1 km2 resolution. 5. Forest available for wood supply: Total forest area defined as in: FAO. 2012. FRA 2015, Terms and Definitions. Forest Resources Assessment Working Paper 180. 36 p. Available at: http://www.fao.org/3/ap862e/ap862e00.pdf. Forest and scrub land 22 812 000 ha Forest land 20 278 000 ha and scrub land 2 534 000 ha Forest area not available for wood supply Forest and scrub land 2 979 000 ha Forest land 1 849 000 ha and scrub land 1 130 000 ha Partly available for wood supply Forest and scrub land 2 553 000 ha (includes in FAWS, below) Forest land 1 149 000 ha and scrub land 1 404 000 ha. Forest Available for wood supply (FAWS) Forest and scrub land 19 833 000 ha Forest land 18 429 000 ha and scrub land 1 404 000 ha In MELA calculations all the scrub land belonging to the FAWS belongs to the category “Partly available for wood supply”, but there are no logging events on scrub land regardless or the category. 6. Temporal allocation of fellings Valid for scenario: Maximum sustained removal Allocation method ☐Optimization based without even flow constraints ☒Optimization based with even flow constraints ☐Rule based with no harvest target ☐Rule based with static harvest target ☐Rule based with dynamic harvest target See item 3 above (max NPV with 4 % discount rate). 7. Forest management Valid for scenario: Maximum sustained removal Representation of forest management ☐Rule based ☒Optimization ☐Implicit Treatments, among of the optimization makes the selections, are based on management guidelines (e.g. Äijälä etc 2014) 7.2 General assumptions on forest management Valid for scenario: Maximum sustained removal ☒Complies with current legal requirements ☐Complies with certification ☒Represents current practices ☐None of the above ☐ No information available Forest management follows science-based guidelines of sustainable forest management (Ruotsalainen 2007, Äijälä et al. 2010, Äijälä et al. 2014). 7.3 Detailed assumptions on natural processes and forest management Valid for scenario: Maximum sustainable removal Natural processes ☒Tree growth ☒Tree decay ☒Tree death ☐Other? Tree-level models (e.g. Hynynen et al., 2002). Silvicultural system ☒Even-aged ☐Uneven-aged Click here to enter text. Regeneration method ☒Artificial ☒Natural Regeneration species ☐Current distribution ☒Changed distribution Optimal distribution may differ from the current one. Genetically improved plant material ☐Yes ☒No Cleaning ☒Yes ☐No Thinning ☒Yes ☐No Fertilization ☐Yes ☒No 7.4 Detailed constraints on biomass supply Volume or area left on site at final felling ☒Yes ☐No 5 m3/ha retained trees are left in final fellings. Final fellings can be carried out only on FAWS with no restrictions for wood supply. Constraints for residues extraction ☒Yes ☐No ☐N/A Retention of 30% of logging residues onsite (Koistinen et al. 2016). Dry-matter loss 20% for logging residues, 5% for stemwood. Constraints for stump extraction ☒Yes ☐No ☐N/A Retention of 16–18% of stump biomass (Muinonen et al. 2013; Anttila et al. 2013) Dry-matter loss 5%. 8. External factors Valid for scenario: Maximum sustained removal External factors besides forest management having effect on outcomes Economy ☐Yes ☒No Climate change ☐Yes ☒No Calamities ☐Yes ☒No Other external ☐Yes ☒No
-
KUVAUS: Karttanäkymässä on 360-kuvauksen ajoreitti pistemuodossa, sekä linkki kuvauspisteen ilmakuvaan (2020) ja 360 katunäkymään (5/2021). Ajoreitin pisteaineistoa on harvennettu. Aineisto on osa Mapspace-sovellusta, jonka tuottaa Field Group. OHJE: Pääset vaihtamaan Ilma-, viisto- ja katunäkymäkuvien katselutilaa Mapspace palvelun Workspaces valikosta. KATTAVUUS: Rajatulle käyttäjäjoukolle Oskari-karttapalvelussa. PÄIVITYS: Satunnainen. KOORDINAATTIJÄRJESTELMÄ: Aineisto tallennetaan ETRS-GK24 (EPSG:3878) tasokoordinaattijärjestelmässä. GEOMETRIA: vektori (kuvaspisteet) ja rasteri (360 katunäkymä sekä ilmakuva) JULKISUUS: Aineisto on nähtävillä vain rajatulle käyttäjäjoukolle Oskari-karttapalvelussa. TIETOSUOJA: Aineistoon ei liity tietosuojakysymyksiä. AINEISTOSTA VASTAAVA TAHO: Vektorimuotoisen karttatason ylläpito ja 360-katunäkymäkuvien päivitys: Paikkatietoyksikkö, paikkatieto_tuki@tampere.fi. Mapspace-palvelun ylläpito: Field Group, tuki@fieldgeo.fi
-
The EMODnet (European Marine Observation and Data network) Geology project collects and harmonizes marine geological data from the European sea areas to support decision making and sustainable marine spatial planning. The partnership includes 39 marine organizations from 30 countries. The partners, mainly from the marine departments of the geological surveys of Europe (through the Association of European Geological Surveys-EuroGeoSurveys), have assembled marine geological information at various scales from all European sea areas (e.g. the White Sea, Baltic Sea, Barents Sea, the Iberian Coast, and the Mediterranean Sea within EU waters). This dataset includes EMODnet seabed substrate maps at a scale of 1:5 000 from the European marine areas. Traditionally, European countries have conducted their marine geological surveys according to their own national standards and classified substrates on the grounds of their national classification schemes. These national classifications are harmonised into a shared EMODnet schema using Folk's sediment triangle with a hierarchy of 16, 7 and 5 substrate classes. The data describes the seabed substrate from the uppermost 30 cm of the sediment column. Further information about the EMODnet Geology project is available on the portal (http://www.emodnet-geology.eu/).
-
This dataset represents the Integrated biodiversity status assessment for fish used in State of the Baltic Sea – Second HELCOM holistic assessment 2011-2016. Status is shown in five categories based on the integrated assessment scores obtained in the BEAT tool. Biological Quality ratios (BQR) above 0.6 correspond to good status. The assessment is based on core indicators of coastal fish in coastal areas, and on internationally assessed commercial fish in the open sea. The open sea assessment includes fishing mortality and spawning stock biomass as an average over 2011–2016. Open sea results are given by ICES subdivisions, and are not shown where they overlap with coastal areas. Coastal areas results are given in HELCOM Assessment unit Scale 3 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and off-shore areas) Attribute information: "COUNTRY" = name of the country / opensea "Name" = Name of the coastal assessment unit, scale 3 (empty for ICES open sea units) "HELCOM_ID" = ID of the HELCOM scale 3 assessment unit (empty for ICES open sea units) "EcoystemC" = Ecosystem component analyzed "BQR" = Biological Quality Ratio "Conf" = Confidence (0-1, higher values mean higher confidence) "Total_indi" = Number of HELCOM core indicators included (coastal assessment units) "F__of_area = % of area assessed "D1C2" = MSFD descriptor 1 criteria 2 "Number_of" = Number of open sea species included "Confidence" = Confidence of the assessment "BQR_Demer" = Demersal Biological Quality Ratio "F_spec_Deme" = Number of demersal species included "Conf_Demer" = Confidence for demersal species "BQR_Pelagi" = Pelagic Biological Quality Ratio "F_specPela" = Number of pelagic species included "Conf_Pelag" = Confidence for pelagic species "ICES_SD" = ICES Subdivision number "STATUS" = Integrated status category (0-0.2 = not good (lowest score), 0.2-0.4 = not good (lower score), 0.4-0.6 = not good (low score), 0.6-0.8 = good (high score, 0.8-1.0 = good (highest score))
Paikkatietohakemisto